Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of β-oxidation in insulin secretion
نویسندگان
چکیده
Short-chain L-3-hydroxyacyl-CoA dehydrogenase (SCHAD) catalyzes the penultimate reaction in the mitochondrial fatty acid oxidation spiral, the NAD+dependent conversion of L-3-hydroxyacyl-CoA to 3-ketoacyl-CoA. The cDNA and genomic sequences for human SCHAD have been elucidated (1, 2). Northern blot analysis of SCHAD mRNA revealed a single transcript; expression was highest in skeletal and cardiac muscle but also present in liver, kidney, and pancreas (1). Earlier work had shown that the islets of Langerhans contain high SCHAD activity (3, 4). This suggests that the enzyme and the regulation of fat oxidation may have an important function in the β cell. Deficiency of a mitochondrial fatty acid oxidation enzyme typically produces hypoketotic hypoglycemia; some defects also produce hepatomegaly and skeletal and cardiac myopathy (5). Tein et al. reported reduced SCHAD activity in muscle but not fibroblasts of a patient with recurrent myoglobinuria, hypoketotic hypoglycemia, and cardiomyopathy (6). Bennett et al. described reduced SCHAD activity in the fibroblasts of two children with recurrent ketosis and ketotic hypoglycemia (7) and reduced activity in the liver but not the muscle of three sudden infant death victims (8).To date none of these patients with reduced SCHAD activity has been shown to have mutations in the Schad gene (9). One patient presenting with fulminant hepatic failure at 3 years was found to have G118A and C171A mutations in the Schad gene (10). The SCHAD knockout mouse dies if fasted for 10 hours, whereas wild-type mice survive 24 hours (11). Apart from fatty acid oxidation defects (FAODs), the main cause of hypoketotic hypoglycemia in infancy is hyperinsulinism (HI). Unlike patients with FAOD, at the time of hypoglycemia, infants with HI have a raised plasma insulin and C-peptide, a low plasma concentration of nonesterified fatty acids (NEFAs), and a normal NEFA/D3-hydroxybutyrate ratio. The patient described below had clear evidence of elevated plasma insulin and C-peptide when she was hypoglycemic. However, on another occasion, the NEFA/D-3-hydroxybutyrate ratio was at the
منابع مشابه
Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of beta-oxidation in insulin secretion.
A female infant of nonconsanguineous Indian parents presented at 4 months with a hypoglycemic convulsion. Further episodes of hypoketotic hypoglycemia were associated with inappropriately elevated plasma insulin concentrations. However, unlike other children with hyperinsulinism, this patient had a persistently elevated blood spot hydroxybutyrylcarnitine concentration when fed, as well as when ...
متن کاملFunctional genomics of the beta-cell: short-chain 3-hydroxyacyl-coenzyme A dehydrogenase regulates insulin secretion independent of K+ currents.
Recent advances in functional genomics afford the opportunity to interrogate the expression profiles of thousands of genes simultaneously and examine the function of these genes in a high-throughput manner. In this study, we describe a rational and efficient approach to identifying novel regulators of insulin secretion by the pancreatic beta-cell. Computational analysis of expression profiles o...
متن کاملMechanism of hyperinsulinism in short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency involves activation of glutamate dehydrogenase.
The mechanism of insulin dysregulation in children with hyperinsulinism associated with inactivating mutations of short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD) was examined in mice with a knock-out of the hadh gene (hadh(-/-)). The hadh(-/-) mice had reduced levels of plasma glucose and elevated plasma insulin levels, similar to children with SCHAD deficiency. hadh(-/-) mice were hypersen...
متن کاملMechanisms of amino acid-stimulated insulin secretion in congenital hyperinsulinism.
The role of amino acids in the regulation of insulin secretion in pancreatic beta-cells is highlighted in three forms of congenital hyperinsulinism (HI), namely gain-of-function mutations of glutamate dehydrogenase (GDH), loss-of-function mutations of ATP-dependent potassium channels, and a deficiency of short-chain 3-hydroxyacyl-CoA dehydrogenase. Studies on disease mouse models of HI suggest ...
متن کاملFamilial hyperinsulinemic hypoglycemia caused by a defect in the SCHAD enzyme of mitochondrial fatty acid oxidation.
Inappropriately elevated insulin secretion is the hallmark of persistent hyperinsulinemic hypoglycemia of infancy (PHHI), also denoted congenital hyperinsulinism. Causal mutations have been uncovered in genes coding for the beta-cell's ATP-sensitive potassium channel and the metabolic enzymes glucokinase and glutamate dehydrogenase. In addition, one hyperinsulinemic infant was recently found to...
متن کامل